
AN EXPERIMENT IN SCIENTIFIC PROGRAM UNDERSTANDING

Mark E. M. Stewart

Dynacs Engineering, Inc.
2001 Aerospace Parkway

Brook Park, OH 44142

Abstract

This paper concerns a procedure that analyzes aspects
of the meaning or semantics of scientific and engineer-
ing code. This procedure involves taking a user's
existing code, adding semantic declarations for some

primitive variables, and parsing this annotated code
using multiple, independent expert parsers. These
semantic parsers encode domain knowledge and

recognize formulae in different disciplines including
physics, numerical methods, mathematics, and geome-
try. The parsers will automatically recognize and
document some static, semantic concepts and help

locate some program semantic errors. Results are
shown for three intensively studied codes and seven

blind test cases; all test cases are state of the art scien-
tific codes. These techniques may apply to a wider

range of scientific codes. If so, the techniques could
reduce the time, risk, and effort required to develop and

modify scientific codes.

Introduction

Scientific software development consumes scarce

resources and limits the pace of science and engineer-

ing. Code development is slow because, in part, it has
not been possible to automate the comprehension of
scientific and engineering software, and comprehension

is a prerequisite for performing several time-consuming,
error-prone software development tasks.

However, the classical notation and methods of mathe-

matics and physics are the knowledge representation for
comprehending scientific code. Scientific programs
involve an organization of these equations and con-
cepts. The programs from a wide range of scientific and
engineering fields use and reuse these fundamental
concepts in different combinations. This paper explains

an experiment in representing, recognizing, and check-
ing these fundamental scientific semantics. Two
practical scientific software problems motivate this
experiment: locating semantic errors in code, and
scientific code documentation.

Reducing the errors in a scientific or engineering

program until its results are trusted involves ensuring

the program's semantics are correct. The existing
software development tools (lint, ftnchek, make, dbx,
SCCS, call tree graphs, memory leak testing) do not

fully alleviate this problem and deal only superficially
with semantics. Further, scientific code verification

techniques (comparison with available analytic and
experimental results; verification of theoretical proper-
ties--convergence and order of accuracy) can only

detect the presence of an error; finding this error often
leads to a time-consuming manual search. For example,
the second-difference code (1) contains a geometrical

error in the grid index I, which is exceedingly hard to
find manually.

FS(I,J) = DW(I+2,J) - 2.*DW(I,J) + DW(I-I,J) (I)

However, it can be found automatically with this

semantic analysis procedure.

The second problem motivating this work is that

understanding another programmer's code is usually
frustrating and time consuming, and to understand code

well enough to modify it confidently requires a large
time investment. Suggestive variable names, program
comments, program manuals, and communications with
the developer are means to convey an understanding of
a code, but these methods are often neither adequate nor
efficient. This semantic analysis procedure can repre-

sent and recognize important code details.

Modern programming practice attempts to reduce the
number of code development errors and to ease code
modification. Software reuse (through subroutine

libraries) and object-oriented programming also target
these problems. Further, modern programming tools
(lint, ftnchek, memory-leak testing) use the program-
ming language's semantics to identify some errors.
Recently there has been work in high-level specification

languages I where a symbolic manipulation program
(Maple, Mathematica) is used to write subroutines or
even programs. The field of formal methods 2 attempts
to solve these software problems by using logic, set

theory, functions, and algebra to develop mathematical
models for systems and to rigorously prove code

properties.

This is a preprint or reprint of a paper intended for presentation at a
conference. Because changes ma_'be made before formal
publication, this is made available With the understanding that it will
not be cited or reproduced without the permission of the author.

Previous efforts in program comprehension exist.
Martino 3 considers automated program parallelization.
Wills 4 uses a representation and parsing to recognize

algorithmic elements and data structures. (The current
work emphasizes scientific domain knowledge, decla-
ration of input properties, and procedure evaluation
with real world test cases.) In natural language under-

standing, parsing has been combined with an ontology
to recognize and represent the semantics of written
text 5.

The limitations of these existing tools, the application
domains of these previous approaches, and the cost of

manual semantic analysis are the motivations for the
current experiment. As a complementary tool, auto-
mated semantic analysis could reduce the time, risk, and
effort during original code development, subsequent

maintenance, second party modification, and reverse
engineering 0 f undocumented code.

This paper follows experimental report form with a

thesis, procedure, results, discussion, and conclusion.

Thesis

The thesis of this semantic analysis experiment is that

fundamental physical and mathematical formulae and
concepts are reused and reorganized in scientific and
engineering codes. This domain knowledge can be
represented in parsers 6'7'8, and when combined with

other methods, these parsers can recognize scientific
code semantics.

If this experiment in automated analysis succeeds, the

resulting tool would help locate errors during code
development and document code for modification.

Procedure

In outline, the current procedure for testing this thesis
consists of four key stages. First, the user adds seman-

tic declarations to his/her existing FORTRAN program
(2).

C? MA _--- mass
C? ACC _- acceleration

FF ---MA*ACC (2)

Distinguished by "C?" these declarations provide the
mathematical or physical identity of primitive variables

in the user's program. Second, the procedure syntacti-
cally parses the user's program into a data structure
representation.

Third, a translation scheme converts statements in the

user's FORTRAN program into statements in different

context languages. For example, the FORTRAN
expression in (2) is converted to the physical dimen-
sions expression (3) and the physical quantity expres-
sion (4).

(M) * (L'T**-2) (3)
mass * acceleration (4)

These context languages reflect the different aspects of
program statements that scientists and engineers

analyze. Aspects include mathematical or physical
quantity, geometrical (grid) location, geometrical entity,
vector entity, dimensions, units, array references, and
array assignments.

Fourth, independent expert parsers examine the trans-
lated phrases and attempt to recognize formulae from
their area of expertise. For example, a dynamics expert

parser would include the rule (5), be able to recognize
the phrase (4) as Newton's law, infer (4) is "force", and
assign this result to FF in (2).

force : mass * acceleration (5)

Further, the units expert parser can reduce (3) and
verify units. The other expert parsers act similarly (see
Table 1).

Quantity-Math

Quantity-Physical

Value / Interval

Grid Location

Geometrical Entity

Vector Entity

Non-Dimensional

Dimensions

Units

Object Analysis

Array Analysis

5 772

3 766

2 223

4 1801

1 447

1 300

1 72

1 59

I 71

1 128

2 121

lll
72

114

27

235

20

15

5

10

14

10

3

Table 1: Aspect analyses performed by the semantic analysis
procedure including number of parsers for each aspect,
number of Yacc r parser rules, and fundamental equations.
Rule (5) is a fundamental equation; some equations require
several parser rules.

When an expert parser recognizes an expression, it

annotates the parse tree. Further, a graphical user

interface (GU1) displays the annotated parse tree as

shown in Figure 1. The user may point to variables and

expressions in his/her code, and the GUI displays any

semantic interpretation and its derivation. In Figure 1

the highlighted expression is recognized as density.

The GUI highlights recognized errors, undefined

quantities, and unrecognizable expressions. Further, the

GUI provides detailed scientific and technical defini-

tions and explanations.

File Dictionary Metrics Highlight Language About I- J

o........ determine inlet static temperature from isentropic relations
tsrat - gaslsn(emachl. 2. gain)
tsln - tsrat't01n

C? TSIN -- TEMPERATURE_ABSOLUTE
atsin(i) - tsin - dftodr

o

o dete_elocity, viscosity, Reynolds number
rhoin -
uin - emachl"sqrt(gam'rgas'tsln)
arhoui(i) - rhoin'uin
aulnfi) - uin
visln - visref'(tslnRvIsr0"vispwr
recxl - rhoin'uin'ehordx/visln

c arecx,
I c........ determine Inlet thermal conductivity and Prandti number
! conln - conref'(tsin/tconr0**conpwr

I prndll - visin*cepel(conln'777.54g)
I / c ii llllllll ill m,ll iii llll ii

• Quantity: DENSITY

v Location: UNKNOWN
v Dimensions: length"-3 mass*'l

._ Units: slugs/It3

v Accuracy:

i

Metascope Undefined

Microscope Error

Back Not Understood

Fwd Performance

Deduced from equation:
DENSITY - PRESSURE tWORK_PUM _1_

Expertise: GASDYNAMICS

File: flow Inlet.f Undefined: 35
i ii i IHIII m.iHi

Errors: 0 Not Understood: 7
llllll i

The mass of a region of space divided by its volume,

'DERW"
The discrete derivative of one variable with respect to another (ratio of two DELTAs).
This symbol takes two adjectives: the function (numerator) and the variable (denominator}.

"DERIV2"
The discrete second derivative of one variable with respect to two others.

/ This symbol takes three adjectives: the function (numerator) and the first and second

Figure 1: GUI display for the semantic analysis program. The top window displays a user's code; variables and expressions may

be selected for explanation. The middle region explains this selected text. In this case, the physical quantity is density, it does

not have a grid location, and it has the displayed dimensions, units, and derivation. The bottom region displays the semantic

dictionary/lexicon.

Extended Example of Parsing for Code Recognition

The most important step in the above procedure is the
expert parsers' analysis. An example of how parser
rules operate to recognize an expression is instructive.

To infer the meaning of the variable VAR in (6), the
parser sequentially examines the right-hand side of (6).
When the parser reads energy<internal> (El), it

anticipates rule (7d) and the tokens '+' and work.

C? P == pressure<static>, RHO == density<static>
C? V _ speed, El ==- energy<internal>
C

VAR = El + P / RHO + 0.5 * V * V (6)

When the parser reads pressure<static> (P), it expects
rule (7c) to produce work and the tokens '/' and

density<static> to appear. When the parser sees all the
tokens of rule (7c), it reduces them to the token work,
and when all the tokens of rule (7d) are present, they are
reduced to the token enthalpy. The parser anticipates

rule (70 next. Similarly, the parser recognizes rules
(7b), (7a), and (7f) to infer that the expression and VAR

represent enthalpy<total>.

speed_squared : speed * speed (7a)
energy<kinetic> : half * speed_squared (b)
work : pressure<static>/density<static> (c)
enthalpy : energy<intemal> + work (d)
sound_speed_squared : gamma * work (e)
enthalpy<total> : enthalpy + energy<kinetic> (f)

(These rules have been simplified to intensive quantities.)

Parser rules (7) are automatically converted to a
subroutine by the program Yacc 7. Table 2 gives a

flavor of the expert parser rules.

Properties of the Procedure

Several additional features and properties of this
automated semantic analysis procedure deserve men-
tion: semantic declaration terms, mathematical rules, the

generality of recognition, the nature of error detection,
and the presence of ambiguities.

Terms in Semantic Declarations

The code fragment (6) defines primitive variables in
four semantic declarations. The six defining terms
pressure, static, density, speed, energy, and internal are
from a lexicon of terms (currently 440), and they
closely resemble English technical terms. Further, the

knowledge representation uses adjective terms, such as
static in pressure<static>, to modify terms and reduce
their number. Multiple adjectives are possible. For

example, the term derivative takes two adjectives,
derivative<pressure time>, to represent 0p/_.

Mathematical Rules

The physical rules (7) differ from mathematical rules,
since mathematical rules apply to any mathematical or
physical quantity. For example, to detect a discrete

difference, Aq, the pattern is variable-variable where
variable is any quantity. This pattern matches exces-
sively, and when it does match, additional code com-

pares the aspects of the two variables. If the variables
are identical, then the expression is zero; if the variables
differ in location only, then the expression is a discrete

difference, Aq. The generality and multiple aspect

nature of mathematical rules make them relatively hard
to develop, but exceedingly useful.

Generality of Recognition
In what forms can a formula appear? The general

derivation of equations is dependent upon the funda-
mental physical equations, the algebraic properties of
mathematical expressions (Commutative, Distributive
and Associative laws), and the transformation laws of

equations (including equation substitution, simplifica-
tion, and solve). This general derivation of equations
implies a non-trivial and potentially expensive search to
recognize all possible forms of a formula.

Further, the rules within a LALR(1) 6'7 grammar simply
reduce one or more input tokens to a single token.
Consequently, most transformations, including substitu-

tion and commutation, cannot be implemented in a

parser.

Consequently, these expert parsers are supplemented
with five methods. The first three of these methods give
a moderate algebraic search. This strategy tries to avoid

expensive general searches each time the formula is
encountered. The existing evidence indicates this is a
reasonable choice.

In the first method, the experts are applied incremen-
tally to expression components. In (8) the sub-
expressions p/p, u2, and ½u 2 are separately referred to

each of the expert parsers for analysis.

p/p + ½ u2 (8)

Second, between these calls to the expert parsers,
methods are applied that commute, associate, and

distribute (and inverse distribute) the expression.

q_q+O
q_q*l
l_q/q
0_ fit- q2
Aq_ ql -q2
Polynomials
Zq_q+q+...
q2_q, q
2q_ ql+q2

A2q_q-2q +q
0q/0x _ Aq / Ax

_2q/_x2 ¢= A2q / A2x

Oq/Oy ¢= Oq/Ox * Ox/Oy

V.q _ expression

Vxq _ expression

V2q ¢= expression

qvq2 _ expression

p _ F / area
F_m*A

W ¢= F * length
Eke= Vz* m*U 2

Rue=k* NA

R_ Ru/Mol. wt.

R ¢= Cp - Cv

Cp _ 5".(Mass Fract.* Cp)

)' _ Cp / Cv

w_p/p

c2_7*p/p

p/p_R*T

ei¢= l/(y-l) * p / p

e_ _ ?6 * Uz

h_ei+w

h o ¢= h + e k

M_U/c

°C _ °K - 273.15

°F _ 1.8 *°C +32

E_F/q
V_IR

v_t/p

Pr_Cp It/k

Reynolds _ p * U * length/It

u*Ou/3x- (l/p)*Op/_x

U0_rI2

(o_m/tgt)corr _ o3m/Ot #0 / 6

Circum _ 2 rt r

vol _ lensth * area

area _ length * length

1¢=1_ +12

I ¢= It */12

qlxq2 _ expression

Jacobian _ expression

n_nl+n2

ana/at= p* U * A
P _ const * T re't

v ¢= vi :[:v2

n ¢= n_ */n2 v ¢= vt */scalar D ¢= ftn(D_)

n _ nl ** n2 surface _ vt * v2 d _ d_ +*/d2

n ¢= ftn(n 0 scalar ¢= scalar + scalar d ¢= fin(d_)

r _ r_ + rE scalar _ scalar */scalar u _ u_ :t:*/u 2

r ¢= rl */r2' scalar ¢= Dot Product] u ¢= ftn(ut)
i.:_i_ :_:_ _"::_: :i : _.:_'_:_ _":_: : ":':'::::::_*::_ _:" _,_ _:_::::i _ _::::_'_::?_!_::"_"/_:::_:_:_::__:_:_ _ _!

Table 2: A sampling of expert parser rules used in the semantic analysis method. Many rules are condensed. Due to decomposi-

tion a single operation may involve multiple independent aspects (units, grid location and quantity for x_coordinate -

x_coordinate), and several rules from this table can apply to it.

Third, some limited substitutions can be performed
between referrals to the expert parsers. Examples

include: 2ai ¢:= ai÷l + ai-i and the normalizing transfor-
mation u2_ u*u.

A fourth method of enhancing recognition is decompo-

sition of semantic knowledge. For example, by
analyzing a quantity's axis, the vector entity expert
parser can recognize a dot product (9) almost independ-
ently of the physical quantity, u. (Note: verifying that

u_2, Uy2, and u_2 are otherwise identical is the further
necessary test.)

This approximate independence of aspects extends to

the analysis of mathematical/physical quantity, number
value/interval, grid location, geometrical entity, vector
entity, non-dimensionalization, dimensions, units, and
object.

In the fifth method, constants are identified from
context. For example, in (10) the constant 32 is

distinguished from other constants for the parser
analyzing temperature equations.

U'U _Ux 2 + Uy 2 + Uz 2 (9) °F_ 1.8 * °C + 32 (10)

Theuseof 32in (10)is anexampleof howthisen-
hancedrecognitionprocessiscontextsensitive6,since
inothercontextsthisconstantcanhaveothermeanings.
Theidentificationof unitconversionconstantsisalso
contextsensitive.

Recognition Search Limitations
Despite these enhancements, only a limited recognition
search is performed, and practical limitations exist. For
example, neither simplifications nor evaluated number

expressions can be recognized. Generally these
limitations can be avoided by rewriting code using a

particular style of structured programming.

For example, the code (11) is not recognizable from

stored rules as c P0,

P = RHO*(E - (U*U + V*V))*(GAM-I) (14)

A novice cannot declare this statement an error either;

however, a human expert would combine a fluency in
aerodynamics formulae with knowledge of the code's
domain to recognize an error.

In cases where multiple conditions must be satisfied

before recognition, the failure of one condition is
evidence of an error. For example, to recognize a
second-difference, formula and geometrical conditions

must be satisfied; however, in (1) the geometrical
condition is not satisfied and an error is suspected.

Although this semantic analysis procedure is not a
direct error tester, by reviewing the analysis, users can

identify errors relatively easily.

CI = (gamma(J)/rgc)**0.5*pltO/tlt0**0.5 (11)

c P0 = (yRTo) la P0/(RT0) = (Y/R) 1/2(PoFF0t/2) (12)

(gamma, y are ratio of specific heats; rgc, R are gas
constant; plt0, P0 are total pressure; tlt0, To are

total temperature; c sound speed; P0 total density)

since its derivation (12) involves simplification of the R
and To terms. However, it could be recognized if the
code were re-written without this cancellation, or if a

specific rule were added.

Similarly, the real constants in (13) are evaluations of

y/(y-1), 2/y, and (y-1)/y for a particular value of the ratio

of specific heats, y, namely _=1.354.

numer=3.8249*(r**l.4771)*(l-r**0.26145)*(l-beta**4)
denom = (1-r)*(i-(beta**4)*r**l.4771) (13)

Evaluated number expressions are hard to recognize

manually, and to be recognized, this code would have to
be rewritten with a semantically declared variable for y.

Error Detection

This semantic analysis procedure detects errors with
direct tests of some code aspects including dimensions,
units, and non-dimensionalization. For other code

aspects, including mathematical/physical quantity, the
semantic analysis procedure attempts to recognize
formulae. Unrecognized code may be incorrect or a
correct formula beyond the scope of the stored rules.
For example, the procedure would declare the aerody-
namics equation (14) unrecognized (pressure is incor-

rectly calculated from density, total energy, velocities
and the ratio of specific heats); (14) cannot be declared

in error since it may be an unknown rule.

Code Ambiguities
A further theoretical issue is that ambiguities exist in the

static analysis of scientific code. The final identity of
the variable P is ambiguous in (15).

C? P == pressure<static>
C? RHO == density

CC = GAM * P / RHO

P=I

(15)

Alter P is assigned the indistinct value I, it may still

represent pressure, or it may represent something else
with the constant value 1. The procedure resolves this

ambiguity by assuming no re-use of the variable; the
new number value is set, and a warning is generated.

The ambiguity can be resolved if the user rewrites the
code so that P is not re-used. This ambiguity would not

exist if the assignment were P = RHO or P = 3.14 (n)
where re-use of the variable P is apparent.

Another ambiguity can exist when deducing an array's
layout. In a static analysis, the indices in array assign-
ment can be under-specified and suggest different array

layouts. In (16), it is not clear if N<3, N>3, or N=3
since the value of N is not known.

C? N -- number<species>
C? R --=-radius

DIMENSION A(10)

A(3) = 0.
A(N) = R

(16)

This ambiguity is resolved with semantic declarations

for array structure or by assuming (and noting) a case.

Rule Ambiguities

When devising semantic rules (Table 2), the ideal is that
no more than one rule should apply in any case.
Mathematics' and physics' relatively unambiguous

character, highly specific semantic terms and patterns,
and careful design all help achieve this ideal. However,
exper/ence shows a few cases exist where this is not the
case. In the current rule design, 12 and 60 in (17) can

C? R == radius<>@ 'inches'

C? RPMC == velocity_angular<angular>@ 'rpm'

PI =3.1415 (17)
V = 2.*PI*R/12./60.* RPMC

be the unit conversion constants 12 in/ft and 60 sec/min

or they can be simplified, 12"60 = 720, and left unex-
plained. Which of these two rules fire depends on
expression order, since unit conversion constants are
context sensitive, that is, the units to be converted must

be visible elsewhere in the expression.

Equation (18) shows another rule ambiguity. Due to
indistinct SI unit conversion factors, the unit conversion

constants are ambiguous.

C? M _ mass@ gram
C? V --= velocity @'cngs'

P = M * V "10 .3 "104
(18)

In (18) the constants are probably 10.3 kg/g and 10.2
m/cm.

Results

The results take three forms: the recognition of code

semantics, the generality of this recognition capability,
and measurements of the inference tree.

Recognition of Code Semantics
The results of analyzing three development codes
demonstrate feasibility for code semantic recognition.
One program, flow_inlet 9, performs data reduction for
experimental data analysis (Figure 1); ALLSPD I° is a

three-dimensional chemically reacting fluid flow code;
COMDES N uses classical aerodynamics for one-

dimensional compressor analysis. In these development
test eases, the procedure developer devises and tests
expert parser rules, and corrects errors. Hence they are
not blind test cases.

Highlighted in the GUI of Figure 1 is a recognized
expression from the first development code. Other
recognized formulae include temperature formulae,
viscosity and thermal conductivity calculated from the

power law, Reynolds number, and Prandtl number.
Most of the not-understood code corresponds to

program variables that are defined by function calls and
logical expressions. The semantic analysis coding
needed for these cases has not yet been developed.

Recognition Metric
To measure this recognition of code semantics, the

parse tree is searched for each operation, a®b where

®_ { +, -, *,/, ** }, intrinsic function reference, fin(a),
and array reference, a(i,j,k). The recognition rate is the

fraction of these operations/references where the
mathematical/physical quantity is understood. Expres-
sion (19) contains 7 operations, 1 intrinsic function
reference, and 1 array reference.

sqrt(gam(J)*RG*32.174"T0) * (P0/(RG*32.174"T0))
(19)

(gam is the ratio of specific heats, RG gas constant,

TO total temperature, and P0 total pressure)

Understanding the first half of the expression as the
speed of sound contributes 5/9 to the understanding
rate, and recognizing the second half as density contrib-

utes 3/9. Since "sound speed * density" is not reducible
by the rules, the recognition rate for this expression

would be 8/9. If this expression were used subsequently
in an expression that is understood, this recognition
fraction would be amended to 1.

This recognition metric has limitations. The metric
does not compensate for either the restrictiveness of the

rules (ie. Aq, Ax must have the same grid location

before Oq/Ox _ Aq / Ax) or attention to comprehension

details (ie. boundary conditions recognized in arrays).
Further, physical or mathematical quantity is the most
valuable information for a user, yet it is the hardest
aspect (Table 1) to recognize. Consequently, this is a
demanding metric.

In Figure 2, this recognition metric for the ALLSPD _°

development case is plotted against an increasing
number of semantic declarations. The curve is offset

from the origin since some trivial expressions are
recognizable without semantic declarations. Table 3
gives recognition results for the other test cases.

;_ i?i i ii_iiii i_ii il i ,ii_i!iil if!i: i:_i: i:: i :_0.9',i,!!i_i!iiiiii!i!!i_!!!ii!'ii!!i!iillii_i_!i̧ i_iiii!_!!ii__iii_i!!iii! !ii!_!iii!!!?iii_i_iii_i_(ii_!_i!ii!!_i__'i_i_i!i_i_i'iii!_ifilili!ii!iiii!i!ii_iiiiiiii_iiIII,_I'!I

o.8I i ii_ i i¸! iili_i i i ii_¸i_¸_ii_!i¸_i'i¸i_ii'_'!i

20 40 60 80

Number of Semantic Declarations

100

Figure 2: Graph showing the increase in expression understanding as semantic declarations are added to twenty subroutines from
the ALLSPD code. The subroutines contain 5278 non-comment FORTRAN statements and 3431 operations to understand.
Further work will increase the understanding fraction. The analysis results reflect the analysis code's quality and not the quality
or ability of the ALLSPD code.

Generality of Reco_mition Capability
The generality of this semantic recognition procedure is
measured by analyzing seven blind test cases (Table 3).
Further, these results demonstrate what a user with a

general code might currently expect (after declaring
input and primitive variables, but not coding additional
mathematical and physical rules). These test cases are
one-, two-, and three-dimensional computational fluid

dynamics (CFD) codes for turbomachinery problems,
and they are typical of CFD codes. The procedure
developer examined these test codes to determine
semantic declarations for coordinates, solution vari-

ables, and other primitive variables. The semantic

analysis program was not modified to correct rule
omissions.

Recognition results for these blind test cases demon-
strate a general semantic recognition capability. Higher

recognition rates are expected in the development codes
since the procedure developer corrects expert parser

errors found during development. Additional work on

the procedure will improve these preliminary results.
Of course, these results reflect the analysis code's level

of development and not the quality of these blind test
cases.

Although human scientific software comprehension

probably involves a more sophisticated analysis
procedure than this, a comparison based on experience
is insightful. A code's developer should have a high
quantity recognition rate (>80%), while an experienced
scientific programmer could recognize 20%-80% of a
code depending on their familiarity with the general
scientific field, the numerical methods and physical
formulae, and the code itself. A dedicated and capable
novice would be fortunate to recognize 20-30%, and

many months of work would be required to reach 50%
recognition for codes this size. However, most code
users do not require a detailed understanding of a code.

flow_inlet09 N 0.2 0.15 20 19.2 77.6 84.4

ALLSPD I° N 5.4 3.9 97 7.7 43.7 49.2

COMDES II N 0.4 0.67 36 10.3 53.0 78.4

ADPAC 12 Y 86.1 64.7 20 12.1 21.0 25.3

ENG1013 Y 19.7 13.3 13 7.1 16.9 13.2

PUMPA u Y 1.5 2.1 31 13.2 24.0 41.1

RVCQ3D 14 Y 3.3 3.5 18 13.5 19.6 26.4

SWIFT Is Y 6.6 6.6 26 29.0 21.8 30.8

STAGE216 Y 4.8 6.3 32 15.6 11.8 21.3

STAGE3 t7 Y 9.8 16.4 37 24.2 20.3 33.5

Table 3: Baseline performance results for the semantic analysis program's analysis of various studied and blind test cases.

Timing and recognition rate depend on semantic declarations-mainly declared array structure; the simplest semantic declarations

have been used here. Calculations performed on an undedicated SGI RI0000 195 MHz processor with 32 kByte data cache. The

analysis results reflect the semantic analysis code's quality and not the quality or ability of the tested codes.

The Inference Tree

Analyzing the progress of expression recognition shows

that recognition rates are very sensitive to inference

failures and rule omissions. The inference tree repre-

sents the organization of inferences (rule recognitions)

necessary to deduce a physical/mathematical expres-

sion's meaning. The inference tree is similar to the

parse tree (20) of an expression except that it combines

parse tree branches so that all inferences from previous

assignments are present in a single tree (21) rooted at

the expression's meaning.

C? MA == mass, L -- length

C? ACC _ acceleration

FF = MA*ACC

WW = FF * L (20)

FF/=\ , WW/=\ ,

MA/ \ ACC"" r / \L

*/ \L

MA/ \ ACC

(21)

The inference tree (21) for variable WW contains 2

inferences and has maximum depth 2. Table 4 shows the

number of inference trees versus size for each assigned

variable in the 1D compressor design code COMDES.

Table 4 also shows that very large, sparse inference trees

exist in scientific code. Programs typically involve many

interconnected expressions so inference trees can be very

large and require many successfully performed rule

matches. However, since an inference (work _ force *

length in (21)) is only possible if its predecessor branches

are understood (force recognized and length defined), an

error or omission will prevent subsequent inferences up to

the tree root and dramatically reduce recognition.

Consequently, recognition rates are very sensitive to rule

errors and declaration omissions. This behavior is

observed in the program examined in Table 4.

2-3

4-7

8-15

16-31

32-63

64-127

128-255

256-511

Table 4: Number of inference trees versus size ranges and tree depths. The inference trees are for each assignment in a 1D-
compressor analysis code. A binary inference tree of maximum depth d can have at most 2d -1 inferences; the gray diagonal
represents this bound, the black region exceeds this bound, and the white region represents sparsity (not filled). These results
demonstrate that inference trees can involve a large number of inferences, :_d be sparse.

Discussion

This automated semantic analysis procedure has

properties advantageous for analysis of scientific
programming. First, mathematical notation is an

expressive knowledge representation. Second, parsers
can use this notation and recognize mathematical,

physical, and geometrical knowledge in code. Third,
parsers can encapsulate formulae into independent
modules. Fourth, these rules are largely fundamental,

which increases generality, and they are largely aspect-
independent, which reduces complexity. Last, the
economics of this procedure appear to be favorable. In
particular, the execution time on a modem workstation
is modest. Further, the user effort to prepare semantic
declarations is reasonable compared to the effort of

syntactically declaring all variables as required by
modem programming practice and some programming

languages.

Potential Limitations

Despite these advantages, several potential limitations
have been identified and must be monitored as the

procedure develops. First, the rate of improvement for
blind test case recognition is important and currently

unknown. This rate projects the time and resources
necessary to develop a practical tool; consequently, this
rate determines the feasibility of this procedure.
Second, as demonstrated by the inference tree analysis,
the quantity recognition rate is sensitive to errors and
omissions in the expert parser rules. Several other

issues are of secondary concern. They include high
memory requirements and undeveloped analysis

capabilities (for logic, subroutine calls, the call tree, and
other programming languages).

Conclusions

Scientists spend too much time slaving over their codes,

analyzing details; and this experiment strives to auto-
mate these menial chores. Further, its use of funda-

mental representation and expert parsers provides an
example for automating other scientific and engineering
tasks. As detailed in the discussion section, if this

'procedure is to become a practical tool, knowledge
rules and infrastructure must be added so that blind test

case recognition rates are higher.

Acknowledgments

The lexical analysis routines and FORTRAN77 gram-
mar are from ftnchek _8. The GUI routines use Tcl/"l'k tg.

This work was supported by the NASA High Perform-

ance Computing and Communications program through
the Computing and Interdisciplinary Systems Office
(contract NAS3-98008) at NASA Glenn Research
Center. Greg Follen, Joe Veres, and Karl Owen were
the monitors. Paul Giel, Ed Hall, Joe Veres, Kuo-Huey

Chen, Rod Chima, and Karen Gundy-Burlet have

provided test cases. The author thanks Andrew Appel
for a great course in compilers, and Ambady Suresh and
Scott Townsend for helpful discussions about this work.

10

Bibliography

1E. Kant, "Synthesis of Mathematical Modeling Soft-

ware," IEEE Software, May 1993.
2j. Woodcock and M. Loomes, Software Engineering

Mathematics (London: Pitman, 1988).
3B. D. Martino, C. W. KelSler, "Two Program Compre-
hension Tools for Automatic Parallelization," IEEE

Concurrency, Jan-March 2000.
4L. M. Wills, "Automated Program Recognition: A
Feasibility Demonstration," Artificial Intelligence 45

(1-2): 113-172 (1990).
5J. Allen, Natural Language Understanding (Menlo
Park: Benjamin/Cummings, 1987).
6A. V. Aho, R. Sethi, and J. D. Ullman, Compilers:

Principles, Techniques, and Tools (Reading: Addison-

Wesley, 1986).
7S. C. Johnson, "Yacc--Yet Another Compiler-

Compiler," Comp. Sci. Tech. Rep. No. 32. (AT&T Bell
Laboratories, Murray Hill, 1977).
sJ. R. Levin, T. Mason, and D. Brown, Lex and Yacc

(Sebastopol: O'Reilly, 1992).
9p. Giel, Private Communication
I°J.-S. Shuen, K.-H. Chen, and Y. Choi, "A Coupled

Implicit Method for Chemical Non-equilibrium Flows
at All Speeds," J. of Comp. Phys., 106(2):306 (1993).

_tj. Veres, Private Communication

12E. Hall, N. J. Heidegger, and R. A. Delaney, "ADPAC
v 1.0 - User's Manual," NASA CR 1999-206600, Feb.
1999.

13M. E. M. Stewart, "Axisymmetric Aerodynamic

Numerical Analysis of a Turbofan Engine," ASME

Paper 95-GT-338, 1995.
_4R. V. Chima, "Development of an Explicit Multigrid

Algorithm for Quasi-Three-Dimensional Viscous Flows
in Turbomachinery," NASA TM 87128.
15R. V. Chima, J. W. Yokota, "Numerical Analysis of
Three-Dimensional Viscous Internal Flows," NASA
TM 100878.

_rK. L. Gundy-Burlet, M. M. Rai, R. P. Dring, "Two-

dimensional computations of multistage compressors
using a zonal approach," AIAA-89-2453, 1989.
17M. M. Rai, "Three-Dimensional Navier-Stokes
Simulations of Turbine Rotor-Stator Interaction; Part 1-

Methodology," J. Propulsion and Power, 5(3):387-396
(1987).
lSR. K. Moniot, "ftnchek" http://www.dsm.fordham.

edu/~ftnchek (Fordham University, New York, 1989).
19j. K. Ousterhout, Tcl and the Tk Toolkit (Reading:
Addison-Wesley, 1994).

11

